Condition Estimation for Matrix Functions via the Schur Decomposition

نویسنده

  • Roy Mathias
چکیده

We show how to cheaply estimate the Fr echet derivative and the condition number for a general class of matrix functions (the class includes the matrix sign function and functions that can be expressed as power series) via the Schur decomposition. In the case of the matrix sign function we also give a method to compute the Fr echet derivative exactly. We also show that often this general method based on the Schur decomposition when applied the matrix sign function and the matrix exponential enables one to compute the function and estimate its condition number more cheaply than the various special techniques that exploit special properties of these two functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Schur-Padé Algorithm for Fractional Powers of a Matrix and Their Fréchet Derivatives

The Schur–Padé algorithm [N. J. Higham and L. Lin, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1056–1078] computes arbitrary real powers At of a matrix A ∈ Cn×n using the building blocks of Schur decomposition, matrix square roots, and Padé approximants. We improve the algorithm by basing the underlying error analysis on the quantities ‖(I − A)k‖1/k , for several small k, instead of ‖I−A‖. We ex...

متن کامل

Statistical Condition Estimation for the Roots of Polynomials

This paper presents fast and reliable condition estimates for the roots of a real polynomial based on the method of statistical condition estimation (SCE) by Kenney and Laub. Using relative perturbations, we provide both a basic implementation of SCE and an advanced one via the condition of the eigenvalues of the corresponding companion matrix. New results for estimating the condition of eigenv...

متن کامل

Stable Spectral Learning Based on Schur Decomposition

Spectral methods are a powerful tool for inferring the parameters of certain classes of probability distributions by means of standard eigenvalueeigenvector decompositions. Spectral algorithms can be orders of magnitude faster than loglikelihood based and related iterative methods, and, thanks to the uniqueness of the spectral decomposition, they enjoy global optimality guarantees. In practice,...

متن کامل

Algorithms and Library Software for Periodic and Parallel Eigenvalue Reordering and Sylvester-Type Matrix Equations with Condition Estimation

This Thesis contains contributions in two different but closely related subfields of Scientific and Parallel Computing which arise in the context of various eigenvalue problems: periodic and parallel eigenvalue reordering and parallel algorithms for Sylvestertype matrix equations with applications in condition estimation. Many real world phenomena behave periodically, e.g., helicopter rotors, r...

متن کامل

A Schur-Parlett Algorithm for Computing Matrix Functions

An algorithm for computing matrix functions is presented. It employs a Schur decomposition with reordering and blocking followed by the block form of a recurrence of Parlett, with functions of the nontrivial diagonal blocks evaluated via a Taylor series. A parameter is used to balance the conflicting requirements of producing small diagonal blocks and keeping the separations of the blocks large...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 16  شماره 

صفحات  -

تاریخ انتشار 1995